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Ready for climate change? 
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True or false? Humans are major 
drivers of climate and environmental 
change. Whatever the answer, the 

idea of ‘drivers’ supports the dominant 
practice of casting people as exogenous 
to the Earth’s complex biogeochemical 
systems. People and their activities and 
artefacts are indeed leading causes of 
environmental and climate change. But 
people are also endogenous to ecosystems, 
making the anthropogenesis account 
incomplete. !ey do not simply cause but 
also are a"ected by and respond to systemic 
changes. Writing in Climatic Change, 
Pinsky and Fogarty1 report on a study of 
human behaviour intersecting with the 
forces and consequences of climate change. 
Correlations between the distribution 
and intensity of #shing activities and 
climate-related shi$s in the distribution 
of four commercially valuable species in 
the northeast region of the United States 
show the potential for both positive and 
negative feedback in relationships between 
#shermen and #sh. 

Shi$s in the distribution of #sh 
populations that coincide with large-scale 
temperature increase and circulation 
changes are now well documented for 
northwest Atlantic waters2. More #nely 
tuned studies of how climate and #shing 
indices correlate with biological indicators, 
such as decreased size of predators and 
increases in lower trophic levels, underscore 
the well-known fact that #shing is itself 
a leading cause of observed biological 
changes. But such work also raises the 
question of mechanistic relationships 
between climate-induced oceanographic 
changes and #shing as they a"ect the biota 
of marine ecosystems3. 

Another approach is to examine the 
question of #shing and climate drivers with 
greater attention given to #shing itself, 
and how it does and does not respond 
to signals of climate-driven change. !e 
label ‘socioecological’ situates such an 
analysis within the larger framework of 
‘sustainability science’4,5 and coupled human 
and natural systems analysis6, where greater 

attention is given to human responses to 
signals of environmental change and how 
those responses feed back into the rest 
of the socioecological system. A critical 
question is what triggers compensatory 
human behaviour and under what 
circumstances human behaviour is likely 
to make things worse, the latter calling for 
major policy review. In either case, answers 
are essential for greater understanding 
of causes and consequences of change in 
marine ecosystems. 

In this light, Pinsky and Fogarty1 used 
large-scale data sets for #sheries in the 
northeastern United States to examine 
the spatial locations (expressed as mean 
latitude) of #sh populations and #shery 
landings for four species over a 40-year 
period. !ey found a more complicated 
situation than expected. Yes, #sh harvesters 
shi$ed northwards as the species they #shed 
shi$ed north, but there was a signi#cant lag 
and considerable variation in the details.

!ey found, for example, that #shermen 
who continued to land in more southern 
states were not landing fewer summer 
&ounder and red hake as might have been 
expected given the northward shi$ of the 
species in question; instead, it seems they 
may be #shing harder for the remaining #sh, 
a compensatory behaviour that can lead to 
over#shing of the southern components of 
the populations, adding to the geographical 
shi$ of biomass to the north. A similar 
situation is playing out in a #shery for 
the Atlantic surf clam, not included 
in this study, where a crucial question 
emerging is whether to begin managing 
the #shery at smaller scales because of 
this phenomenon7.

!ere can be regulatory constraints. 
In Pinsky and Fogarty’s study1, a reason 
#shermen did not shi$ northwards for red 
hake was that the kind of gear required 
to catch them is forbidden in northern 
waters owing to by-catch concerns for other 
species. Such constraints can worsen the 
economic costs of transition, as when too 
few #sh are landed in an area for buyers 
to exist there. Feedback is also evident in 
this case, in that the very light intensity 
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Shifts in fishing grounds 
Adaptation to climate change in fisheries is occurring very rapidly. Research now shows that it is a complex process 
whose outcomes can both mitigate and exacerbate impacts on fish populations.

Bonnie J. McCay

New England fisheries su!er the impacts of climate change. The two commercial fishing vessels seen 
here await news of the opening of new fishing grounds northward of their traditional ones.
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Variation in climate velocity 

to the two-dimensional spatial gradient in temper-
ature (in °C/km, calculated over a 3°-by-3° grid),
oriented along the spatial gradient. We introduced
the seasonal climate shift (in days/decade) as the
ratio of the long-term temperature trend (°C/year) to
the seasonal rate of change in temperature (°C/day).
We present seasonal shifts for spring and fall
globally using April and October temperatures.

The median rate of warming since 1960
has been more than three times faster on land
(0.24°C/decade) than at sea (0.07°C/decade,
Fig. 1A and table S1). At the scale of our anal-
ysis, median spatial gradients in temperature on
land (0.0082°C/km, Fig. 1B and table S1) are
greater than those at sea (0.0030°C/km) because
of the greater latitudinal and topographical tem-

perature differences on land, whereas large-scale
currents tend to reduce small-scale variability in
ocean surface temperatures. When spatial gradi-
ents are combined with rates of long-term tem-
perature change, the resulting median velocity of
isotherms across the ocean (21.7 km/decade) is
79% of that on land (27.3 km/decade), but when
comparing only those latitudes where both land
and ocean are present (50°S to 80°N), velocities
in the ocean (27.5 km/decade) are similar to those
on land (27.4 km/decade). The frequency dis-
tribution of velocities in the ocean is bimodal
(Fig. 2A), with a broader spread of positive val-
ues in the ocean than on land and many negative
values in cooling areas, including the Southern
Ocean and Eastern Boundary Current regions

with increased upwelling (Fig. 1, A and C, and
fig. S1D). The relative proportions of warm-
ing and cooling areas influence the land/ocean
comparison (table S1): With less cooling, me-
dian velocity in the Northern Hemisphere ocean
is 37.3 km/decade but only 30.3 km/decade on
land, whereas in the Southern Hemisphere me-
dian velocities are 17.6 and 14.6 km/decade for
land and ocean, respectively. The velocity of cli-
mate change is two to seven times faster in the
ocean than on land in the sub-Arctic and within
15° of the equator (Fig. 1C), but ocean and land
velocities are similar at most other latitudes (20°
to 50°S and 15° to 45°N).

At the scales studied, the velocity of climate
change is very patchy on land, whereas the ocean
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Fig. 1. (A) Trends in land (Climate Research Unit data set CRU TS3.1) and ocean
(Hadley Centre data set Had1SST 1.1) temperatures for 1960–2009, with latitude
medians (red, land; blue, ocean). (B) Spatial gradients in annual average tem-
peratures using the same data; cross-hatching shows areas with shallow spatial
gradients (<0.1°C/degree). (C) The velocity of climate change (km/decade) is the
velocity at which isotherms move: positive in warming areas, negative in cooling

areas, and generally faster in areas of shallow spatial gradients. (D) Seasonal shift
(days/decade) is the change in timing of monthly temperatures, shown for April,
representing Northern Hemisphere spring and Southern Hemisphere fall: positive
where timing advances, negative where timing is delayed. Cross-hatching shows
areas with small seasonal temperature change (<0.2°C/month), where seasonal
shifts may be large. See fig. S3 for October seasonal shifts.
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Centers of species’ ranges: 1968 
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Shifts in centers of species’ ranges: 1968-2008 
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Temperature and regional shifts 
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Temperature and regional shifts 
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Temperature and regional shifts 
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Temperature and regional shifts 
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Gulf of Mexico outlier 
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Gulf of Mexico constrained by geography 
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Temperature change explains regional shifts 
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Fisheries lag behind fish 

Red hake       75% slower 

American lobster    87% slower 

Yellowtail flounder   85% slower 

Summer flounder    68% slower 

Pinsky & Fogarty 2012 Climatic Change Letters 
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Cumulative impacts 

Fuller, Brush & Pinsky in prep  
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Critical harvest rate 
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Summary 

• Species track climate velocity 

• Fisheries follow, but lag behind 

• Method of fishery management 

determines cumulative impact 



Climate velocity projections 

Fig. 3. Estimated mean daily growth rates of all strains at 
their isolation locations, between 1980 and 2010. These 
estimates were based on monthly temperature records (19) 
and each strain’s thermal tolerance curve and depend on the 
assumption that growth was limited solely by temperature. 
Even warm-water strains have mean growth rates exceeding 
zero (the horizontal line), indicating that they are capable of 
persisting in their environment though their optima are below 
what our model predicts to be most adaptive. 

Fig. 4. Changes in temperature drive changes in the potential diversity of phytoplankton, as predicted 
by mechanistic species distribution models. (A) Mean annual temperature across the oceans over 
historical (1991-2000) temperature regimes. (B) Change in mean annual temperature (°C) between 
historical (1991-2000) and predicted future temperature regimes (2091-2100). (C) Percent change in 
potential diversity between historical and predicted future temperature regimes. Potential diversity is 
reduced sharply in the tropical oceans, despite these regions experiencing relatively small increases 
in temperature. 
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Evaluate conservation plans 



Adjust fisheries management 
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news & views

True or false? Humans are major 
drivers of climate and environmental 
change. Whatever the answer, the 

idea of ‘drivers’ supports the dominant 
practice of casting people as exogenous 
to the Earth’s complex biogeochemical 
systems. People and their activities and 
artefacts are indeed leading causes of 
environmental and climate change. But 
people are also endogenous to ecosystems, 
making the anthropogenesis account 
incomplete. !ey do not simply cause but 
also are a"ected by and respond to systemic 
changes. Writing in Climatic Change, 
Pinsky and Fogarty1 report on a study of 
human behaviour intersecting with the 
forces and consequences of climate change. 
Correlations between the distribution 
and intensity of #shing activities and 
climate-related shi$s in the distribution 
of four commercially valuable species in 
the northeast region of the United States 
show the potential for both positive and 
negative feedback in relationships between 
#shermen and #sh. 

Shi$s in the distribution of #sh 
populations that coincide with large-scale 
temperature increase and circulation 
changes are now well documented for 
northwest Atlantic waters2. More #nely 
tuned studies of how climate and #shing 
indices correlate with biological indicators, 
such as decreased size of predators and 
increases in lower trophic levels, underscore 
the well-known fact that #shing is itself 
a leading cause of observed biological 
changes. But such work also raises the 
question of mechanistic relationships 
between climate-induced oceanographic 
changes and #shing as they a"ect the biota 
of marine ecosystems3. 

Another approach is to examine the 
question of #shing and climate drivers with 
greater attention given to #shing itself, 
and how it does and does not respond 
to signals of climate-driven change. !e 
label ‘socioecological’ situates such an 
analysis within the larger framework of 
‘sustainability science’4,5 and coupled human 
and natural systems analysis6, where greater 

attention is given to human responses to 
signals of environmental change and how 
those responses feed back into the rest 
of the socioecological system. A critical 
question is what triggers compensatory 
human behaviour and under what 
circumstances human behaviour is likely 
to make things worse, the latter calling for 
major policy review. In either case, answers 
are essential for greater understanding 
of causes and consequences of change in 
marine ecosystems. 

In this light, Pinsky and Fogarty1 used 
large-scale data sets for #sheries in the 
northeastern United States to examine 
the spatial locations (expressed as mean 
latitude) of #sh populations and #shery 
landings for four species over a 40-year 
period. !ey found a more complicated 
situation than expected. Yes, #sh harvesters 
shi$ed northwards as the species they #shed 
shi$ed north, but there was a signi#cant lag 
and considerable variation in the details.

!ey found, for example, that #shermen 
who continued to land in more southern 
states were not landing fewer summer 
&ounder and red hake as might have been 
expected given the northward shi$ of the 
species in question; instead, it seems they 
may be #shing harder for the remaining #sh, 
a compensatory behaviour that can lead to 
over#shing of the southern components of 
the populations, adding to the geographical 
shi$ of biomass to the north. A similar 
situation is playing out in a #shery for 
the Atlantic surf clam, not included 
in this study, where a crucial question 
emerging is whether to begin managing 
the #shery at smaller scales because of 
this phenomenon7.

!ere can be regulatory constraints. 
In Pinsky and Fogarty’s study1, a reason 
#shermen did not shi$ northwards for red 
hake was that the kind of gear required 
to catch them is forbidden in northern 
waters owing to by-catch concerns for other 
species. Such constraints can worsen the 
economic costs of transition, as when too 
few #sh are landed in an area for buyers 
to exist there. Feedback is also evident in 
this case, in that the very light intensity 

ANTHROPOLOGY

Shifts in fishing grounds 
Adaptation to climate change in fisheries is occurring very rapidly. Research now shows that it is a complex process 
whose outcomes can both mitigate and exacerbate impacts on fish populations.

Bonnie J. McCay

New England fisheries su!er the impacts of climate change. The two commercial fishing vessels seen 
here await news of the opening of new fishing grounds northward of their traditional ones.
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• Can use future climate velocity to 

guide adaptation efforts 
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